
Chapter 1

Introduction

1.1 Goals

In follow-up studies different types of outcomes are typically collected for each
sample unit, which may include several longitudinally measured responses, and
the time until an event of particular interest occurs. The research questions
of interest in such studies often require the separate analysis of the recorded
outcomes, but in many occasions interest may also lie in studying their asso-
ciation structure. A frequently encountered example of the latter case can be
found in biomarker research, where many clinical studies are designed to iden-
tify biomarkers with strong prognostic capabilities for event time outcomes.
Standard examples include among others, HIV research in which interest lies
in the association between CD4 cell counts or viral load and the time to AIDS,
liver cirrhosis studies which investigate the association between serum biliru-
bin and the time to death, and prostate cancer studies in which interest lies
in the association between PSA levels and the time to the development of
prostate cancer. An important inherent characteristic of these medical con-
ditions is their dynamic nature. That is, the rate of progression is not only
different from patient to patient but also dynamically changes in time for the
same patient. Thus, the true potential of a biomarker in describing disease pro-
gression and its association with survival can only be revealed when repeated
evaluations of the marker are considered in the analysis.

To address research questions involving the association structure between
repeated measures and event times, a class of statistical models has been devel-
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oped known as joint models for longitudinal and time-to-event data. Currently,
the study of these models constitutes an active area of statistics research that
has received a lot of attention in the recent years. In particular, after the early
work on joint modeling approaches with application in AIDS research by Self
and Pawitan (1992) and DeGruttola and Tu (1994), and the seminal papers by
Faucett and Thomas (1996) and Wulfsohn and Tsiatis (1997) who introduced
what it could be nowadays called the standard joint model, there has been
an explosion of developments in this field. Numerous papers have appeared
proposing several extensions of the standard joint model, including among
others, the flexible modeling of longitudinal trajectories, the incorporation of
latent classes to account for population heterogeneity, the consideration of
multiple longitudinal markers, modeling multiple failure times, and the calcu-
lation of dynamic predictions and accuracy measures.

The primary goal of this monograph is to offer a comprehensive introduc-
tion to this joint modeling framework. In particular, we will focus on the type
of research questions joint models attempt to answer and the circumstances
under which these models are appropriate to answer these questions. We will
explain which are the key assumptions behind them, and how they can be op-
timally utilized to extract relevant information from the data. An additional
aim of this book is to promote the use of these models in everyday statisti-
cal practice. To this end, (almost) all the theoretical material covered in the
text is illustrated in real data examples using package JM (Rizopoulos, 2012b,
2010) developed for the R software environment for statistical computing and
graphics (R Development Core Team, 2012).

1.2 Motivating Studies

1.2.1 Primary Biliary Cirrhosis Data

Primary biliary cirrhosis (PBC) is a chronic, fatal, but rare liver disease
characterized by inflammatory destruction of the small bile ducts within the
liver, which eventually leads to cirrhosis of the liver. The dataset we con-
sider here comes from a study conducted by the Mayo Clinic from 1974 to
1984 (Murtaugh et al., 1994) that includes 312 patients, 158 randomized to
D-penicillamine and 154 to placebo. The outcome of primary interest was
patient survival and whether this could be prolonged by D-penicillamine. In
addition, we have information on baseline covariates (e.g., age at baseline, gen-
der, etc.), and follow-up measurements for several biomarkers. These included
among others, serum bilirubin, the presence of spiders (blood vessel malfor-
mations in the skin) and hepatomegaly (enlarged liver). Here we will focus on
the serum bilirubin level which is considered a strong indicator of disease pro-
gression, and in particular, we are interested in the association of this marker
with survival. The original clinical protocol for these patients specified visits
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FIGURE 1.1: Smooth longitudinal profiles of 16 subjects from the PBC
dataset. The solid line represents the fit of the loess smoother.

at six months, one year, and annually thereafter. However due to death and
censoring, patients made on average 6.2 visits (st.dev. 3.8 visits), resulting in
a total of 1945 observations of serum bilirubin. By the end of the study 140
patients had died, 29 received a transplant, and 143 were still alive. Figure 1.1
shows smoothed longitudinal profiles of the log serum bilirubn for a sample of
patients, from which it can be seen that many of these profiles are nonlinear
in time.

1.2.2 AIDS Data

In the AIDS dataset we consider 467 patients with advanced human immun-
odeficiency virus infection during antiretroviral treatment who had failed or
were intolerant to zidovudine therapy. The main aim of this study was to
compare the efficacy and safety of two alternative antiretroviral drugs, namely
didanosine (ddI) and zalcitabine (ddC), in the time-to-death. Patients were
randomly assigned to receive either ddI or ddC, and CD4 cell counts were
recorded at study entry, where randomization took place, as well as at 2, 6,
12, and 18 months thereafter. More details regarding the design of this study
can be found in Abrams et al. (1994).

By the end of the study 188 patients had died, resulting in about 59.7%
censoring, and out of the 2335 planned measurements, 1405 were actually
recorded, leading to 39.8% of missing responses. Figure 1.2 presents the
Kaplan-Meier estimate of the survival function for the time to death as well
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FIGURE 1.2: Left panel: Kaplan-Meier estimate of the survival function
for the time-to-death in the AIDS dataset. The dashed lines correspond to
95% pointwise confidence intervals. Right panel: Longitudinal trajectories for
square root CD4 cell counts for six randomly selected subjects in the AIDS
dataset.

as longitudinal trajectories of the square root of the CD4 cell count for a
random sample of ten patients (for more details on the Kaplan-Meier esti-
mator the reader is referred to Section 3.2). For our illustrations we focus in
one of the secondary aims of this study, which was to study the association
structure between the CD4 count and the risk for death for these advanced
HIV infected patients. In particular, the CD4 cells are a type of white blood
cells made in the spleen, lymph nodes, and thymus gland and are part of the
infection-fighting system. The CD4 count measures the number of CD4 cells
in a sample of blood and constitutes an important marker of the strength of
the immune system. Therefore, a decrease in the CD4 cell count over time is
indicative of a worsening of the condition of the immune system of the patient,
and thus to higher susceptibility to infection.

1.2.3 Liver Cirrhosis Data

The Liver Cirrhosis dataset includes 488 patients with histologically verified
liver cirrhosis, with 251 patients randomized to a treatment with prednisone
and the remaining received placebo. Liver cirrhosis is a generic term that
includes all forms of chronic diffuse liver disease characterized by extensive
loss of liver cells and extensive disorganization of the hepatic lobular architec-



Introduction 5

Follow−up Times before Censoring

Time (years)

−10 −5 0

Follow−up Times before Death

Time (years)

−10 −5 0

FIGURE 1.3: Distribution of follow-up times before censoring (left panel)
and death (right panel) for the Liver Cirrhosis data.

ture. The study took place from 1962 to 1974 in Copenhagen, and its main
purpose was to evaluate whether prednisone prolongs survival for patients
with cirrhosis (Andersen et al., 1993). By the end of follow-up, 142 (56.6%)
prednisone-treated, and 150 (63.3%) placebo-treated patients died.

Patients were scheduled to return at 3, 6, and 12 months, and yearly there-
after, and provide records for several clinical and biochemical variables. The
clinical variables included information on alcohol consumption, nutritional sta-
tus, bleeding and degree of ascites, whereas the most important biochemical
variables are albumin, bilirubin, alkaline phosphatase and prothrombin. Even
though patients were supposed to provide measurements on the aforemen-
tioned predetermined visit times, the actual follow-up times varied consider-
ably around the scheduled visits. Moreover, as it can be seen from Figure 1.3,
patients who died had more visits taking place shortly prior to death.

For our illustrations we will concentrate on the association between the
prothrombin index and the risk for death. This index is a measurement based
on a blood test of coagulation factors II, VII, and X produced by the liver.
Figure 1.4 depicts the subject-specific longitudinal trajectories per treatment
group. In addition, we are interested in investigating the capability of the pro-
thrombin index in discriminating between subjects who died within a medi-
cally relevant time interval after their last assessment and subjects who lived
longer than that. That is, for a future patient from the same population, we
would like to inform the treating physicians about her survival probability that
is calculated based on her baseline covariates and her available prothrombin
measurements, and assist them in further deciding upon their actions.
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FIGURE 1.4: Subject-specific longitudinal trajectories of the prothrombin
index for the Liver Cirrhosis data per treatment group.

1.2.4 Aortic Valve Data

The Aortic Valve dataset includes 289 patients with Aortic valve Stenosis
(AS) who underwent allograft aortic root replacement (RR) or subcoronary
implantation (SI) procedures at Erasmus University Medical Center between
1992 and 2005 (Takkenberg et al., 2002, 2006). Aortic stenosis occurs when the
opening of the aortic valve located between the left ventricle of the heart and
the aorta is narrowed, and is one of the most common valvular heart diseases.
All patients in this dataset have been followed-up prospectively by annual tele-
phone interviews and through visits to their cardiologist. Echocardiographic
follow-up at Erasmus MC were obtained at six months postoperative, one
year postoperative, and thereafter, biennially by means of serial standardized
echocardiography. By the end of the study 61 (21.1%) patients have died and
78 (27%) had a re-operation.

Here we are interested in the association between the aortic jet velocity
(aortic gradient) and the risk for death or re-operation. Due to the fact that the
aortic gradient levels exhibit right skewed shapes of distribution, we typically
work with their square root transform. Figure 1.5 shows the scatterplots of
the subject-specific intercepts and slopes, from a simple linear regression for
the square root of the aortic gradient, ordered according to the event time.
We observe much greater variability in the subject-specific intercepts than in
the slopes, and for the latter we see that the variability decreases for later
event times. This is partially explained by the fact that as time progresses
more aortic gradient measurements are recorded for each patient, which in
turn results in a more accurate estimate of the slope.
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FIGURE 1.5: Subject-specific intercepts and slopes per type of operation for
the evolution of the square root of the aortic gradient in time for the Aortic
Valve Dataset. Solid lines denote the fit of the loess smoother.

1.2.5 Other Applications

The previous sections have focused in datasets from human studies focusing
in the association between longitudinal biomarker measurements and patient
survival. Nevertheless, the interrelationships between longitudinal responses
and event times are of interest in many other disciplines as well. Below we
give three such examples from other areas than biomarker research.

Ex1: In gregarious animal studies longitudinal measurements of the sociody-
namics of the herd may be associated with the time to relocation to an
other area.

Ex2: In sociology and educational testing but also in some epidemiological
studies it is often of interest to relate the performance of respondents
to questionnaires to event time outcomes. For example, in dementia
research questionnaires are used to measure the status of a patient’s
mood, and her memory and communication capabilities. Since dementia
is progressive, patients take these questionnaires at frequent intervals
and interest lies in the relation between the evolution of the performance
of a patient in these psychometric tests and the clinical onset of the
disease.
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Ex3: In civil engineering it is often of interest to study the time until a build-
ing is no longer useable. To achieve this several indicators of structural
integrity are recorded at regular time intervals, with aim to evaluate if
these indicators are strong predictors for the risk of failure of the struc-
ture in question.

1.3 Inferential Objectives in Longitudinal Studies

It is evident from the previous section that in longitudinal studies typically
a wealth of information is recorded for each patient, and interest often lies
in complex associations between these different pieces of information. Before
discussing in more detail possible interrelationships that could be of interest
in a longitudinal setting, we will first make a distinction between two types
of outcomes recorded in these studies. First, we will call explicit outcomes the
outcomes that are explicitly specified in the study protocol to be recorded
during follow-up. For example, in the PBC study these include the survival
information on the patients, and the longitudinal measurements on biomark-
ers. The second type of outcomes, which we call implicit outcomes, are the
outcomes that are not of direct interest but nonetheless may complicate the
analysis of the explicit ones. A characteristic example is missing data. In par-
ticular, even though according to the protocol patients are typically required
to appear at the study center(s) at prespecified occasions to provide informa-
tion, this is rarely done in practice. Patients often miss some of their visits
or they may completely drop out from the study for a variety of reasons. For
instance, as we saw in the AIDS dataset, out of the 2335 planned measure-
ments, 1405 were actually recorded, leading to 39.8% of missing responses.
Another example of an implicit outcome, closely related to the missing data,
is the visiting process, which is defined as the mechanism (stochastic or deter-
ministic) that generates the time points at which longitudinal measurements
are collected (Lipsitz et al., 2002). Random visit times are more often encoun-
tered in observational studies where the time points at which the longitudinal
measurements are taken are not fixed by design but rather determined by the
physician or even the patients themselves. Nonetheless, random visit times
may even occur in randomized studies that have pre-specified by the protocol
visit times. For example, for the PBC dataset and during the first two years of
follow-up, measurements of serum bilirubin were taken at baseline, half, one,
and two years, with little variability, whereas, in later years the variability in
the visit times increased considerably. In the following we present a catego-
rization of the possible research questions we could formulate in a longitudinal
study.
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1.3.1 Effect of Covariates on a Single Outcome

The most common type of research questions in medical studies, in general,
is to estimate or test for the effect of a set of covariates in some outcomes of
interest. For example, for the AIDS patients we would like to know whether
ddI improves the survival rates, or whether there is a difference in the average
longitudinal profiles of the CD4 cell counts between males and females. The
answer to such questions requires to postulate a suitable statistical model that
relates the covariate(s) to the outcome of interest. Depending on the nature
of the outcome several types of statistical models are available. A review of
the basic modeling frameworks for longitudinal and event time data is given
in Chapters 2 and 3, respectively.

1.3.2 Association Between Outcomes

Often it is also of interest to investigate the association structure between
outcomes. For instance, in the PBC dataset physicians are interested in mea-
suring how strongly associated is the current level of serum bilirubin with the
risk for death. A similar example occurs in asthma studies, where the risk
for an asthma attack may be correlated with the levels of air pollution. At
first glance, these research questions seem similar in spirit to the ones posed
in Section 1.3.1, with the only difference being that the covariate process is
now time-dependent. Thus, one could simply proceed by postulating suitable
models that relate the two outcomes of interest. For example, we could simply
formulate a time-dependent Cox model for the hazard for death and include
the longitudinal CD4 cell count measurements as a time-dependent covariate
(Andersen and Gill, 1982). Nevertheless, an important feature that we need to
carefully consider is the fact that in such models the outcome variables play
the role of both the response and the covariate. To proceed in this setting we
first need to discern the type of the covariate-outcome process, and in partic-
ular whether the covariate-outcome is internal (also known as endogenous) or
external (also known as exogenous) to the response-outcome. Formal defini-
tions of endogeneity are given later in Chapter 3. However, a more intuitive
manner to distinguish between internal and external covariates is by under-
standing the nature of a time-dependent covariate process. To put it loosely,
internal covariates are generated from the patient herself and therefore require
the existence of the patient. Revisiting the previous two examples, we note
that the CD4 cell count and the hazard for death are stochastic processes
generated by the patient herself, and therefore the CD4 cell count constitutes
an internal covariate process. On the other hand, air pollution is an external
covariate to asthma attacks, since the patient has no influence on air pollu-
tion. When the covariate-outcome is external to the response-outcome, we can
use the majority of the standard models mentioned in Section 1.3.1, with rel-
atively small modifications. However, as we will see later, statistical analysis
with internal covariates poses several additional difficulties.
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1.3.3 Complex Hypothesis Testing

Combinations of the previous two types of research questions are also often of
interest. A typical example of this setting constitutes the evaluation of surro-
gate markers. In particular, for chronic conditions, such as PBC, we could be
interested to assess treatment efficacy using the short term longitudinal serum
bilirubin measurements instead of the survival endpoint, which is lengthy to
ascertain. Prentice (1989) set three conditions for surrogacy: (I) treatment
must have an effect on patient survival; (II) treatment must have an effect
on the marker, i.e., serum bilirubin; and (III) the effect of treatment should
manifest through the marker, i.e., the risk for death given a specific marker
trajectory should be independent of treatment. It is evident that to assess
conditions (I) and (II) we need to posit separate models for the survival and
longitudinal outcomes each one containing treatment as a predictor. How-
ever, to check condition (III) a model for the survival outcome that conditions
on both treatment and serum bilirubin is required instead. Given the special
characteristics of serum bilirubin as an endogenous time-dependent covariate
explained above, joint models provide a flexible modeling framework to deter-
mine whether treatment has an effect on survival after accounting for serum
bilirubin.

A similar type of analysis is required when we are interested in simulta-
neously testing for the effect of a baseline covariate in several outcomes. For
instance, continuing on the same example mentioned above, serum bilirubin
may not be a good biomarker in describing disease progression, and therefore
treatment may still have an influence on patient survival, even after condi-
tioning on serum bilirubin. In this situation we could extend our analysis, and
include additional biomarkers of disease progression, such as spiders and hep-
atomegaly. Interest could then be in testing for the effect of treatment in all
markers simultaneously or in testing for the association of one specific marker
with the risk for death after correcting for the other markers. It is evident that
in order to perform such tests we need a modeling approach that can flexibly
capture the interrelationships between these outcomes.

1.3.4 Prediction

Statistical models are also often built to provide predictions of patient-related
outcomes. In particular, due to current trends in medical practice towards
personalized medicine, models that can provide subject-specific predictions of
high quality can be proven quite valuable. In practice, for a specific patient
and at a specific time point during follow-up, physicians would like to utilize
all available information they have at hand (including both baseline informa-
tion and accumulated biomarker levels) to produce predictions of medically
relevant outcomes, gain a better understanding of the disease dynamics, and
ultimately take the most optimal decision at that time. When new information
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is recorded, physicians would be interested in updating these predictions, and
therefore proceed in a time dynamic manner.

When good quality predictions are of interest, it would be useful to com-
bine all available information we have for a patient in order to account for the
biological interrelationships between the outcomes. In the PBC dataset for
example, it is clear from the definition of the biomarkers that they measure
different aspects of liver functioning. Thus, if we were to base predictions on
one of those markers and ignore the others, we would discard valuable infor-
mation. This would unavoidably imply that we would not reach the maximum
of the predictive capability that we could have achieved had all biomarkers
been simultaneously combined. It is evident therefore that a modeling ap-
proach that combines all markers in a single model is advantageous because
it utilizes all available information. The added value of combining markers
for prediction has been empirically illustrated by Fieuws et al. (2008) who
noted that predictions of graft failure in a kidney transplant study based on a
joint model using all recorded biomarkers of kidney functioning substantially
outperformed the separate analyses per marker.

1.3.5 Statistical Analysis with Implicit Outcomes

In all the above types of research questions we have focused on explicit out-
comes. However, as mentioned earlier, in longitudinal studies more often than
not implicit outcomes are also generated and their appropriate handling is
required even though they are not the outcomes of primary interest. In par-
ticular, in the presence of implicit outcomes, and before proceeding in the
analysis of interest one must carefully consider the nature of the probabilistic
mechanism describing the process generating the implicit outcome(s) (miss-
ing data and/or visit times) because it can greatly determine how the analysis
should be adjusted in order to obtain valid inferences.

1.4 Overview

Chapters 2 and 3 aim at introducing the building blocks of joint models,
namely linear mixed-effects models for longitudinal data and relative risk mod-
els for survival data. In particular, in Chapter 2 we discuss the complications
arising in the analysis of longitudinal responses, and we introduce the linear
mixed-effects model as a flexible modeling framework to handle correlated
data. We refer to estimation and inference, and then focus on the problem of
missing data that is frequently encountered in longitudinal studies. We define
the different missing data mechanisms and explain under which circumstances
the linear mixed model provides valid inferences.

Chapter 3 starts by explaining the special features of event time data,
such as censoring and truncation, and how they complicate the analysis of
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such data. Following, we introduce relative risk models and in particular the
Cox model. As in Chapter 2, we briefly refer to estimation, under partial
and full likelihood, and inference. For the last part of this chapter we focus
on time-dependent covariates. More specifically, we provide the definitions of
endogenous and exogenous time-dependent covariates, and we discuss under
which settings the extended (time-dependent) Cox model provides valid infer-
ences.

Chapter 4 introduces the basics of the joint modeling framework. In par-
ticular, continuing from the end of Chapter 3, we motivate joint models first
from the survival point of view as a modeling framework to handle endogenous
time-dependent covariates. We introduce the standard joint model, discuss the
assumptions behind it, and present maximum likelihood estimation. Follow-
ing, we make the connection with the missing data framework presented in
Chapter 2, and additionally motivate joint models as models that can handle
nonrandom dropout.

In Chapter 5 we explore several extensions of the standard joint model.
Extensions for the survival part include different types of parameterizations
between the longitudinal and survival outcomes, stratified relative risk models,
handling of multiple failure times, and the consideration of accelerated failure
time models. With respect to the longitudinal part we first present joint models
with categorical longitudinal markers, and following we extend to multivariate
joint models with multiple longitudinal outcomes. Finally, as an alternative to
the standard joint model we present the latent class joint model which assumes
that the association between the longitudinal and event time processes is due
to the existence of latent heterogeneity in the population.

In Chapter 6 we present several diagnostic tools to assess the assumptions
behind joint models based on residuals. We focus on separate types of residu-
als for the survival and longitudinal parts, respectively, and special attention
is given on how these residuals can be affected by the nonrandom dropout
induced by the occurrence of events. In addition, we also refer to misspec-
ification of the random-effects distribution and how this affects the derived
inferences.

Chapter 7 focuses on prediction and discrimination. More specifically, we
illustrate how joint models can be used to estimate survival probabilities for
the event time outcome and predictions for the longitudinal outcome, and
illustrate how these are dynamically updated as additional information is
collected for each subject. Following, we turn our attention to prospective
accuracy measures for the longitudinal marker, and assess its capability in
distinguishing between subjects who are about to experience the event and
subjects who have a much lower risk. In particular, under a general definition
of prediction rules, we present suitable definitions of sensitivity and specificity
measures, and we determine the longitudinal marker’s accuracy using receiver
operating characteristic methodology.

Finally, Appendix A provides a brief introduction to the R language such
that readers with no or little experience with this software package obtain the
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minimal required background knowledge to enable them to apply the joint
modeling techniques presented in this text in their own datasets.


